
NASA-CR-190635

Transforming AdaPT to ADA

REPORT 3

Stephen J. Goldsack
A. A. Holzbach-Valero

Imperial College, London, England

Raymond S. Waldrop

....Rich d__A. Volz
Tex_M-University

!!!!ZIIZ_E!IIII

April 27, 1991
..... .: : :::

Cooperative Agreement NCC 9-16

ReSea_ Activity No. SE.35

NASA 30hnson Space Center
Engineering Directorate

RighJ_aSYstems Division

.........................

©

:::_ZZ i

Research Institute for Computing and Information Systems

:----,: : University of Houston-Clear Loke

INTERIM BRAFT REPORT

N

mm

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICtS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program ofresearch in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May i 986, to Joindy plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RIClS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand its gateway affillates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchcrs. Within UIICL, the mission is being

implemented through interdlsciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RIClS research anal education programs, while other research

organizations are involved via the "gateway" concepL

A rnaJor talc of RICIS then is to find thc best match of sponsors, researchers

and research obJcctivcs to advance knowlcdgc in the computing and informa-

tion sclenccs. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

m

imi

u

_m

m

i

I

w

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Raymond S. Waldrop and Richard A. Volz of Texas

A&M University and A. A. Holzbacher-Valero and Stephen J. Goldsack of Imperial

College, London, England. Dr. E.T. Dickerson served as RICIS research
coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Terry D. Humphrey of the Systems Software Section, Flight Data Systems

Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

I

w

D

9m

m

m

w

w

L_

w

w

w

z

w

m

J

m
u _

Transforming AdaPT
Status Report 3

DRAFT

to Ada

A.A. Holzbacher-Valero and S.J. Goldsack

Imperial College, London

R. Volz and R. Waldrop

Texas A & M University

April 27, 1991

1 Introduction

This paper describes how the main features of the proposed Ado language extensions

intended to support distribution, and offered as possible solutions for Ada9X can be

implemented by transformation into standard Ad_3. We start by summarising the

features proposed in the paper [Gargaro et al,1990J which constitutes the definition of

the extensions. For convenience We have called the language in its modified form AdaPT
which might be interpreted as t'Ada with partitions _.

These features were carefully chosen to provide support for the construction of exe-

cutable modules for execution in nodes of a network of loosely coupled computers, but

flexibly configurable for different network architectures and for recovery following failure,

or adapting to mode changes. The intention in their design was to provide extensions

which would not impact adversely on the normal use of Ado, and would fit well in style

and _feel"-with the existing standard.

We begin by summari_ing the features introduced in AdaPT. These are defined in

detail in the report cited [Gargaro et al, 1990].

1. Partitions A partition may be considered to constitute a "class" in the sense used

in object oriented systems and languages. However, it is closely modeled on the

Status Report 3 - Dra[t 0
w

Ada package, presenting, in an interface specification, the items which are made

available for its interaction with other system components. Thus its interface may

contain procedures and functions, task declarations, and constants and exception

declarations. It may not contain any object or type declarations. To help in defining

the initial configuration a partition may have parameters (in parameters only),

which are supplied by the program invoking the allocator when a new instance of

the partition is created.

A partition is a library unit, and constitutes a type declaration. Other units may

have with clauses to give them access to the definition in the library, and within

the scope of the with clause they may declare variables of the type. However, the

type is an implicit access type, and no instance of the partition is created by such

a declaration. That is achieved by an assignment statement by copy from another

variable of the same {access) type. Creation of new instances of a partition are

obtained by new allocator statements, but these are not permitted in a partition.

Such new partition instances are created during the configuration phase, in the

definition of nodes which are described in the following paragraphs.

The use of library units "withed" by a partition lead to a special problem. Such

packages may have "state", and consequently cannot be shared safely between

different instances of a partition and between different partitions which may "with"

the same unit. Thus, the semantics of with clauses for partitions is different from

that for packages in a normal Ada program. The closure of the directed graph

formed by the with clauses of a partition form part of the partition, and so are

replicated as a whole with each replication of the partition. Each instance of a

package or other object included in such a dependency graph, belongs therefore to

one and only one partition. In contrast therefore to the public units described in 4

below, we sometimes refer to them _ non-public units)

2. Nodes Nodes differ very little from partitions. They too have features correspond-

ing to those of packages; like partitions they have separate interfaces and bodies,

and instance variables to reference them. However, nodes can create new instances

of partitions and other nodes. Their role is to serve as units which will eventually

be compiled and linked to form executable binary objects.

The issue of system construction and start up and elaboration is described in

AdaPT as a normal Ada main program call for a first selected node, called the

distinguished node; this then "creates" others and so recursively until the whole

system is elaborated.

3. Conformant partitions To support the provision of changed modes in a program,

1The word pr/vate has, of course, other connotations in Ada, including AdaPT.

m

m
w

z

mw

m
J

z _

m

w

W

m
"u

=_

m
m
row.

l

m

m

Status Report 3 - Draft

particularly as a technique for recoveD" following failure of part of the system,

partitions can have "peers" which have identical interfaces but different bodies.

In object oriented terminology they would be of the same "type". possibly one a

subtype of the other, but capable of providing the same set of actions for a client,

albeit with different effect. As we shal!see, this feature is difficult to reconcile with

Ada's strong typing. In exact analogy with the idea of conformant partitions, it is

proposed to support conformant nodes.

. Public Units Partitions are permitted to share information, especially type infor-

mation to give the types of the messages which form the parameters of sub-programs

and task entries in the partition interfaces. Such sharing is permitted by sharing

constant state packages; in order to enable the compiler to check that the "constant

state" requirement is correctly followed, such shared units are called publics. Types

in public units may be private, and may be defined along with operations on them

so that they are "abstract data types".

This summary identifies the main features for which Ada translations of AdaPT must

be defined.

w

2 DRAGOON and AdaPT

The structures proposed for Ada in the AdaPT extensions were selected in part as a result

of experience with the language DRAGOON [See, for example, JOOP March 1991]. This

language offers a fully object-oriented language, based on Ada but extending it through

the use of a class concept and supporting inheritance and polymorphism. Objects which

are class instances may be passive, changing the!r state only upon calls from other objects,

or may be active, containing an internal thread of control, which executes concurrently

with others. Objects are considered both as units of system construction and modularity,

and indeed of re-use, and also as units of allocation in the network when the system is

configured to execute in a network. An important aspect of the distributed case involves

the idea that an object can inherit the run-time support for some computer system, so

becoming an "executable class". Instances of such a class are executable binary objects.

In proposing the AdaPT extensions to Ada, it was felt that class inheritance provided

in DRAGOON went further than was likely to appeal to the Ada community, since

undoubtedly the philosophy of the 9X development would be one of keeping the impact

on existing Ada users to a minimum to overcome perceived shortcomings. The partition

was proposed to capture the essential nature of the class as a unit of modularity and

allocation without introducing the largely orthogonal aspect of inheritance. However,

Status Report 3 - Draft

the node in AdaPT does to some extent serve in the role of the executable class in

DRAGOON; node instances are run-time binaries compiled and linked to run on the

appropriate machines. It is worth noting that in both DRAGOON and AdaPT the use

of non- homogeneous networks is a small step (no dependence on shared memory exists),

though in neither case has it so far been proposed to press forward in that direction.

DRAGOON is supported by software which transforms the programs into conven-

tional Ada. At one time it was thought possible that the DRAGOON preprocessor

might be modified for use in translating AdaPT codes, but eventually it seemed that,

despite the relationship which exists between the languages, they are sufficiently different

that it was not a useful direction to proceed. Rather in this paper we describe a design

for an AdaPT translation tool, and how the translations can be done by hand, using the

experience from the DRAGOON work.

w

I

m

mitt

W

m

3 Abstract State Machines vs Abstract Data Types

To understand the way in which partitions are handled in our Ada translation, it is

necessary first to be familiar with the idea of an Abstract Data Type and with the related

notion of an Abstract State Machine. This section reviews these concepts and compares

them.

W

n

Abstract State Machines

An ASM is a software component which possesses some state (which may be hidden or

visible). Operations that access and modify that state are provided in its interface. A

simple example of an ASM in Ada is the following package: _ =

package Vartable..ASM is

procedure Write (Val.e : in NATURAL):
procedure Read(Valse:out NATURAL):

end Vartable_ASM

7

The:state, which here has:itS simplest possible form, a:single variable, is encapsu-

lated in the package body and is accessed by users of the package through the interface

procedures, reacland write.

package body Variable_ASM is

qm

w

m

-- i

!

m
m

Status Report 3 - Dra[t

The_vamable : NATURAL;

procedure Wrote (Value : in NATURAL) is

begin
The_vamable :-- Value;

end Write;

procedure Read (Value: out NATURAL)is

begin
Value :-- The_vat'table;

end Read;

end Varlable..ASM;

Abstract Data Type

An ADT is more general 2 than an ASM in that it defines a type and a set of operations

which can be applied to objects of that type. Conceptually, the type represents a state.

An Ada private record type is generally preferred for the corresponding type decla-

ration. A record type is used for generality, although here the record contains only a

single variable, in most cases there will be a number of variables forming the state.

t.

i

"5

i

package Vamable.4DT is

type Variable is private;

procedure Write (V' in out Variable', Value" in NATURAL);

procedure Read (V in out Variable; Value" out NATURAL):

private

type Variable is
record

The_variable : NATURAL;
end record;

end Vamable.ADT;

"77: :

This package is associated with a body which defines the operations of the procedures:

package body Vamable_ADTis

procedureWrite (V" in out Variable; Value' in NATURAL)is

begin
....... V. The_vamable := Value;

end Write;

2An ADT may be used to construct an ASM. An ASM cannot be used to simulate an ADT.

==_ = : :

Status Report 3 - Draft

procedure Read (V in out Varzable; Value : out NATURAL) is

begin
Value := 1,' The_variable;

end Read;

end Var_able_ASM:

B

Users of this package can declare objects (instances) of type Variable. Every such

object, declared to be of the ADT type, is a different instance of the state.

State instances can be manipulated through the operations provided by the ADT.

The following is a fragment of a possible Variable_ADT user.

with Var_able_ADT;

procedure Ezample is

VI : Vanable_ADT. Variable;
V9 : Vanable.ADT. Variable;

begin

Vanable-ADT. Write (VE,
w

end Ezample;

m_

w

m

w

Relating an ASM to a Corresponding ADT

Any ASM can be related 3 to an ADT. The basic converting strategies are the following:

• any element that defines part of the state in the ASM must become a component

of the ADT's (record) type,

• all the operations provided in the ASM's interface gain an extra parameter which

is an object of the ADT's type,

• any ASM's caller must declare an ADT's object and pass it in its calls to the ADT.

3We do not use the term translation because the resulting ADT as such does not respect the ASM's

semantics. Instead of maintaining the state at the callee level (as it happens in an ASM), the state is

kept inside the caller. Every caller possess a different state copy.

g

m

=u

i

m

Status Report 3 - Draft

To define the ADT's type, the elements with state which must be taken into account

are the objects (variables) and the tasks declared both in the specification and in the

body of the ASM. The objects are straightforwardly converted into components of the

state record type. In our Variable example, the object The_ Variable is transformed into

a component of the Variable_ADT's type. As for the tasks, they first become task types

and then their instances are included as components of the state record type. To illustrate

this case, we convert our Variable_ASM into a Protected_ Variable_ASM by defining a task

in its body.

package body Protected_Variable_ASM is

The_variable : NATURAL;

task The_monitor is

entry Start_Write;
entry End_ Write;
entry Start.Read;
entry End_Read;

end The_monitor,

task body The_monitor is

end The_monito_

procedure Write (Value" in NATURAL)is
begin

The_monitor.Start_ Write;
The_variable := Value;
The_monitor. End. Write;

end Write;

procedure Read (Value • out NATURAL)is

begin
The_monitor. Start.Read;
Value := The_variable ;
The_monitor. End.Read;

end Read;

end Protected. Variable-ASM:

The corresponding Protected_ Variable_ADT will have the following specification:

package Protected_ Variable..A DT is

type Variable is private;

procedure Write (V:in out Variable; Value : in NATURAL);
procedure Read (V:in out Variable; Value : out NATURAL);

private

w

Status Report .'3 - Draft

task type The_momtor_Type is :
entry Start. Wr_te;
entry End. Write;
entry Start_Read:
entry End_Read;

end The_momtor.Type;

type Varlable is
record

The_variable: NATURAL;
The_monitor : The.mondor.Type;

end record:

end Protected_ Variable..A D T;

m

lip

g

When the ASM contains elements with visible state (declared in its interface), the

use of a private Ada type for the ADT type declaration implies an extra overhead..New

procedures must then be provided for access to objects that were directly visible in the

ASM and which are now hidden inside the ADT type. In the same way, extra procedures

are necessary to give access to task entries when the corresponding task is hidden in

the private part of the ADT. Consequently, any reference inside a caller to those visible

state elements must be converted into a procedure call. The code of any users of the

ASM's will also be affected. In such cases, the use of a private type may be considered

inappropriate.

Once the ADT's type is constructed, we define the ADT's interface operations.

The ADT's object is added as an extra parameter to the operations provided in the

ASM's interface. In our Variable example, the procedures Write and Read declarations

are transformed from:

package l,'arlable..ASM is

procedure Write (Value" in NATURAL);
procedure Read (Value " out NATURAL);

end Varlable..ASM;

to

package Stack.ADTis

procedure Write (V" in out Variable; Value • in NATURAL);
procedure Read (V : in out Vartable; Value "out NATURAL);

W

w

m
w

z

W

m

,m

w

FIB

n

Status Report 3 - Draft

end Vamable..ADT;

The subprograms inside the ASM's body must also be adapted to deal with the extra

parameter. For example, in the Protected_ Variable_ADT the Write's body' has become:

procedure Write (V:in out Vamable; Value: in NATURAL)is
begin

V. The_monitor.Star__Write;
V. The_vamable := Value;
V. The_monitor. End. Write;

and Write;

--=

In this way, the operations manage a particular state instance passed to it by the

caller, instead of the state maintained inside the ASM's.

The result of this two-step translation is an ADT. No more transformation on the

ASM is needed. Only some adaptations are still required on the ASM's callers. Any

unit that uses the ASM is transformed to deal with the ADT, by applying the three

following modifications:

* the substitution of the ASM by the ADT in the with clause,

• the inclusion of a object declaration of the ADT type 4,

• the passing of the declared ADT object as a new parameter in every call to the

ASM.

A possible Variable_ASiWs caller is:

with I/ariable..ASM;
procedureExample is

begin

Variable.ASM. Write (8);

end Example;

4From the semantic point of view, the ADT object should be declared in a declarative part that

gives it the same scope than the one established by the original with clause. Normally this means a
declaration at the highest level.

Status Report 3 - Draft 10

After applying the three steps described above, we will obtain:

with Vamable_4DT;
procedure Ezample is

V : Uar_able-4DT. Vartable;

begin

Variable_ADT. Write (V, 8);

end Ezampte;

U

4 Transforming a Partition into an ADT

The partition is a new construct introduced by AdaPT that captures the virtual node type

concept (the minimum unit of distribution and of dynamic node creation). A partition

declaration is equivalent to an access type declaration. Therefore a new operation is

required to create a partition object. A partition instance is an ASM.

Like a package, a partition may have a specification (its interface) and a body. Ini-

tialization parameters (only in) can be defined for configuration purposes. Mainly three

constraints exist on the specificatio_ declarations due to the distribution. First, to avoid

remote memory accesses, no object declaration is allowed. Second. type declarations are

also excluded because of the dynamic type checking that they would require. The Ada

strong typing would imply that the different instances of a partition would define differ-

ent type declarations. Public units are provided for those type declarations. Finally, no

partition creation is allowed inside a partition (partitions can refer to other partitions

but they cannot create them).

The term partition is "overloaded" and may also be used to name the larger entity

consisting of the partition unit itself with all the elements in the "closure" of its de-

pendency graph. The dependency graph consists of the units implied by with clauses

appearing in the partition's context clauses but not including:

• public unitsS,

• other partitions.

Spublic units are normally shared between various partitions and then do not belong to any of them.

Public units do not require any transformation due to their constant state character.

B

w

D

w

=

II

lm

,m-.

Status Report 3 - Draft ii

As explained above, conformant partitions can be defined for the purpose of supporting

mode changes. A partition that is conformant to another one. has the same interface but

a different body (and most often a different set of "withed" units).

4.1 The Partition Closure

In our transformation description, we assume that all units are correct 6. The conversion

strategy is based again on the ADT's concept. A simple partition that provides a buffer

will be used as an example in the following sections.

partition Buffer is

Max_Num-Jtems : constant NATURAL := 50;

procedure Put (Item' in INTEGER);
procedure Get (Item out INTEGER);
function Num.of_Items return NATURAL2, _

end Buffer:,

partition body Buffer is

-- Lixxked list implementat, ion of a bu:_e¢.

typeCell;

type Link is accessCell;

type Cell is
record

Data : INTEGER;
Next : Link;

end record;

First_Item,
Last_Item : Link := null:
Num_Items : NATURAL := O;

end Buffer,

Every non constant state unit 7 belonging to the partition closure is converted into an

ADT, as described in previous sections. An instance of that state is thus added to the

SBefore any transformation, the syntax of all units (publics, non publics, partitions and nodes) must
be checked. Besides, the semantic constraint on the partition creation inside a partition has to be
verified.

/Units without state or with constant state do not require any transformation.

m

m

Status Report 3 - Draft

state declarations of any unit which "withs" it. In this way, any state defined in anv of

those units is transferred to its caller until the partition itself is reached.

"['he partition is also translated into an ADT. As a partition defines an access type,

the corresponding ADT's type must be an Ada access type s. To simulate the new

operation necessary to create a partition object, a procedure Create must be defined in

the ADT's interface. This procedure has an in out parameter which is the ADT's object

itself, and in parameters matching with the partition initialization parameters.

package Buffer_ADT ;s

Maz_Num_ltems : constant NATURAL := 50;

type Buffer is private;

procedure Put (B : in out Buffer, I: INTEGER):
procedure Get (B : in out Buffer, I: out INTEGER);
function Num_of_1tems (B : in Buffer) return NATURAL:

procedure Create {B :in out Buffer):

private

-- Linked lis_ implementation of a buffer.

type Cell;

type Link is access Cell;

type Cell is
record

Data : INTEGER;
Nezt : Link;

end record;

type Buffer_State is
record

First.Item,
Last..[tem : [,Ink := null:
Num_Items : NATURAL := 0;

end record;

type Buffer is access Buffer.State;

end Buffer_AOT;

The final result of all these transformations is a unique state representation type of

the whole closure. Therefore every partition object declaration will define a different

state.

Sln a normal transformationof an ASM to an ADT, an access typeisnot requiredas shown in

the Variableexample.The non-publicunitsinthedependencygraphgiveriseonlytovariablesofnon
access data type.

w

W

l

roll

'qF

w

w

J

D

u

lw

Status Report 3 - Draft 13

Generally the units belonging to the closure can be transformed in a one-to-one unit

mapping way. However sometimes this can result in an inconsistent situation. An exam-

pie is a partition P that uses two non constant state units ,41 and ,42 which both use a

common non constant state unit B.

B;

with B; A1; with B; A2;

v

with A1, A2;P;

Applying the already explained strategy to the above example, the translation steps are:

1. B will be converted to B_ADT,

2. A1 to AI_ADT which will contain an instance of B_ADT's state within its state

representation type,

type AI is
record

Re.f_to_B : B..ADT.B;
-- Components representing proper ll's state,

end record;

3. A2 to A2_ADT which will also contain an instance of B_ADT's state inside its state

representation type,

v
type A$ is

record
Ref_to_B : 8_ADT.B;
-- Components representing proper 12's state.

end record;

4. P to P_ADT which will include both AI_ADT's and A2_ADT's state in its state

representation type. "

Status Report 3 - Draft 14
z

type P is

record
Ref_to_Al : AI.ADT.AI;
Re/.to_A2 : A2_ADT.A2;
-- Components representing P's own state.

end record;

This transformation leads to an inconsistency, since following the state references

from P to B, it appears that as P refers to A1 and to A2 separately and each has its

own reference to B, therefore B is referenced twice instead of once. This problem can be

solved in two alternative ways. First, access types could be used to represent the ADT's

types for AI_ADT, A2_ADT and B_ADT. The Create operation of an P_ADT's instance

could then check to obtain a unique reference to B_ADT (same value inside A I_.4DT's

and A,t_ADT's states). This solution can support the one-to-one unit mapping scheme.

However it implies a computing overhead and it is a quite complicated solution. The

second solution recognizes that this problem would not exist if the dependency graph was

a tree. It arises only when the closure has a general acyclic graph structure. However,

this graph can be converted into a tree by joining units. In such a solution, only one ADT

(AIA2_ADT) would be built from A1 and AL This would include a unique reference to

B_ADT.

type AIA_ is
record

Re/_to_B : B_ADT.B;
-- Components representing /i's and i2's proper stats.

end record;

J

w

m

m

m

g

m

w

W

w

The disadvantage is quite evident. The one-to-one unit mapping scheme is no longer

fully maintained. Otherwise the solution is far simpler than the first one and consequently

it is preferred.

g

4.2 The Conformant Partitions

Originally, conformant partitions were thought of as a tool for providing degraded modes.

The intent was to declare a partition which defines a certain behaviour and then confor-

mant partitions which might serve for recovery following a partial system failure. This

was implicitly distinguishing two kind of partitions (the first declared partition and the

w

m

Status Report .3 - Draft 15

conformant partitions to that one). Now, we have realized that conformant partition

could also be used for non recovery purposes like algorithm tests. In such cases, all

conformant partitions (included the first declared one) have the same purpose and are

equals. In this way, the conformance relation is understood as a relation between parti-

tions sharing a common interface but having separate bodies.

To explain the transformation of conformant partitions into Adz83, we introduce a

partition Conf_Buffer conformant to the partition Buffer already cited.

partition Conf_Buffer is Buffer"

v

w

L_

By definition, Conf_Buffer has the same interface as Buffer. Conf_Buffer's body could

be an array implementation of a buffer.

partition body Conf_.Buffer is

-- Array implementation of a buffer.

subtype B.ffer_lndez is NATURAL range 1 .. Maz_Num_ltems;

[tems..Buffer : array (Buffer_lndez) of INTEGER;
t,
J: Buffer_Index := 1;
Nnm.Jtems : NATURAL range 0 .. Maz_Nnm_ltems := O;

end Con/..Buffer,

package Con/.Buffer_AOT is

Maz_Num_ltems : constant NATURAL := 50;

type Buffer is private;

procedurePut (B" in out Buffer, I" NATURAL);
procedureGet (B " in out Buffer, I: out NATURAL);
function Num_of..ltems (B:in Buffer) return NATURAL;
procedureCreate (B : in out Buffer);

private

subtypeBuffer_.Indez is NATURAL range1 .. Maz_Num_ltems;
subtypeRems..[ndez is NATURAL range0 .. Maz_Num_Items;
type Buffer_Imple is array (Buffer.]ndez) of NATURAL;
type Buffer_State is

record
Items_Buffer : array (BufferJndez} of INTEGER;
t,

w

Status Report ,'3 - Drab 16

] : Buffer_lndez :-- 1:
Nurn_Items : [tems..Indez :-" O:

end record:

type Buffer is access Buffer_State;

end Conf.Buffer.ADT:

J

w

It may be noted that the actual definitions of types in the private part might be

deferred to the package body; only an incomplete type definition for Buffer_State and

the declaration of Buffer need appear in the partition.

package Conf_Buffer.ADT is

private

type Buffer_State;

type Buffer is access Buffer_State;

end Conf_Buffer.A 07",

Here they are shown in full for convenience.

Conformant partitions introduce in Ada two new features dil_cult to reproduce in

Ada83. Those features are quite similar to the object oriented concepts of polymorphism

and dynamic binding. For their implementation, we have used the experience gained in

DRAGOON's translation to Ada.

W

W

W

L_

Polymorphism in AdaPT

Like subclass declarations of a common parent in an object oriented language, confor-

mant partition declarations are intended to imply compatible type declarations. Thus,

assignment statements may be executed between conformant partitio n variables 9. In

other words, a conformant partition variable may point to different conformant partition

instances during its life.

Current.Buffer : Buffe_
A.con/Buffer : Conf.Buffer; _

9We note that a partition object, structurally speaking, is "a partition variable" that points to "a
partition instance" (because a partition defines an access type which refers to an anonymous type). In
this section, we will use both terms to facilitate the understanding of the polymorphism concept.

w

I

I

m

W

Status Report 3 - Draf_ _T

begin
-- The creation of the partition variables.

Current.Buffer := new Buffer'PARTITION ;

A_con/_Buffer := new Conf-BufferlPARTITION ;

-- The use of Current_Bufferwhich refers to a partition Buffer.

-- I mode change.

Current..B.ffer := A_conf..Buffzr,

-- The use of Current_Buffer which refers to a partition Conf_Buffer.

end '

r

.,_..

z_,...

In DRAGOON's translation into Ada, a common type declaration for all classes is

used to implement this feature. This type called APPLICATION. OBJECT is a list whose

first element has the same structure for every class instance. Next elements in the list

provide the state information for every class or subclass appearing in the inheritance se-

quence. As the state information varies depending on the class represented, the elements

in the list, except the header, may be of different type. To implement such a structure in

Ada, the Ada strong typing must be overridden using UNCHECKED-CONVERSION t°.

Besides the state information, any element in the list includes a selector value, named

OFFSPRING-NO, that determines what kind of element is its successor. Using both,

the OFFSPRING-NO and UNCHECKED_CONVER,SION, the list can be built and man-

aged.

In AdaPT, the conformance relation establishes a limited kind of polymorphism

between the conformant partitions. To simulate this relation in Ada83, some of the

mechanisms employed by DRAGOON's translation can be reused. For instance, we

introduce an extra type declaration, called Partition, for each conformant relation. Un-

like the type APPLICATION.OBJECT which relates all classes existent in a DR.A-

GOON's application, the type Partition will only associate the partitions belonging

to the same conformance relation. Different conformance relations (e.g Buffer, Con-

sumer) in an AdaPT's system will imply different types (e.g Universal_Buffer.Partition,

UniversaLConsumer.Partition) in the corrresponding Ada system. In this way, the in-

compatibility of different conformance relations is clearly stated and maintained. The

t°DRAGON's experience demonstrates that the use of UNCHECKED.CONVERSION in a controlled

way as a result of an automatic translation should not raise any problem. However, we recognize that it

does not reflect a good Ada programming style.

Status Report 3 - Dra[t 1S

type Partition is an Ada record with two components, named Selector and Reference.

Reference is of type access and may point to any of the ADT's types produced ! the

conformant partitions transformation. To obtain this effect, the Ada Strong Typing is

overridden by using UNCHECKED_CONVERSION. Selector is a discrete value which

identifies what kind of partition _1 from the conformant set is currently referred.

g

i

package Universal-Buffer is

type Partition;

type T___eference is access Partition;

type Partition is
record

Selector : NATURAL;
Reference : T_Reference;

end record;

Undefined_Selector : ezceptton;

end Universal_Buffer,

i

i

w

Every ADT, representing in Ada83 one of the conformant partitions, exports a con-

stant Selector value that identifies itself.

with Universal.Buffer.
package Buffer_ADT ;s

Selector " constant NATURAl, := 0;

procedureCreate (B " in out Universal_Buffer.Partttton);

end Buffer-ADT;

The ADT uses this value to initialize the Selector component of any partition variable

that it creates.

packagebody Buffer_ADT is

nSelector is used to distinguished the different partitions involved in a conformance relation (e.g.

Buffer and ConJ_Buffer). Multiple variables of a particular partition (e.g Buffer) will imply the same

Selector value and different Reference values.

m
i

i

m_

lilt

Status Report 3 - Dra[t 19

v

functionBuyer_to_Reference is new UNCHECKED_CONVERSIO,V

(Buffer, Unzversal.33uffer.Partitzon):

procedure Create (B " in out Un=versal._Buffer. Farlit=on) is

Buff" Buffer :-- new Buffer_State;

begin
B.Selector :-- Selector;

B.Refereace :-- 8uJ_er.to._Reference (Buff);
end Create;

end Buffer.ADT;

Conc!uding, the AdaPT's example of polymorphism is transformed into the following

Ada83 code:

Current_Buffer,
A.conf..Buffer : Universal_Buffer.Partition;

begin
-- The creation of the partition variables.

Buffer..ADT. Cre,te (Current_Buffer);
Co./..Buffer_ADT. Create (A_Con/Buffer);

-- The use of Cur_r_nt_Sufferwhich refers to a partition Buffer.

-- A ,.ode change.

Current..Bu_er "-- A.conf_Buffer;,

-- The use of Current_Buffer which refers to a partition Conf..Buffer.

end "

Dynamic Binding in AdaPT

As already explained, the conformance relation associates an interface with a set of

implementations. A call to this interface has to be dynamically bound to the correct im-

plementation. In other words, depending on the current conformant partition referenced

by the partition variable, a different partition body must be called.

r_

Status Report ,3- Draft

Current.Buffer" Buffe_
A_conf.Buffer" Con[.Buffer:

20

w

begin

-- The creation of the partition variables.

Current_Buffer := new Buffer'PARTITION ;
A_con/Buffer := new Con[_Buffer'PARTITION ;

-- The use of Current_Buffer which refers to a partition Buffer.

Current_Buffer.Put (8);

-- I mode change.

Current..Buffer := A_con[-Buffer;

-- The use of Current_Buffer which refers to a partil;ion Con[Buffer.

Current_Buffer, Put [8);

end ;

w

m

W

z
w

w

This feature of AdaPT is similar to the object oriented concept of d_tnamic binding. In

DRAGOON, a call to a class method is dynamically bound to the class instance currently

pointed to by the class variable.

Two alternative solutions have been considered to implement this behaviour in Ada83.

Both involve the selection of the appropriate conformant partition body by consulting

the Selector component of the Partition variab!e. These solutions differ in where the

selection is made.

g

w

Indirect calls via an extra unit

In this solution an extra level of call indirection would be introduced between the caller

and the possible callees (i.e. the conformant partitions bodies) to execute the selection.

This extra level would define a specification twin to the unique conformant partition

specification. Its body would direct the calls to the different partition bodies. In some

ways, this solution reflects perfectly the concept of conformance, emphasizing the exis-

tence of a unique interface common to all conformant partitions. However, this solution

has two important disadvantages. First, the inclusion of an extra level of call indirection

implies a run-time overhead. Second, a task entry defined in the conformant partition in-

terface can no longer be directly called. We remember that a task declared in a partition

specification is converted into a task type and afterwards included in the corresponding

ADT's type. In this way, no procedures are required to give access to the task entries and

m
J

w

u

g

IW

g

g

Status Report 3 - Draft 21

the transformation strategy of moving any state object into the ADT's type is respected.

To illustrate this. we define Sync_Buffer which provides a synchronous buffer.

partition Sync.Buffer is

Max_Num_Items : constant NATURAL := 50;

task Buffer is
entry Put (Item: in INTEGER);
entry Get (Item: out INTEGER);
entry Num_o/_.Items (Num : out NATURAL);

end Buffer,

end Sync.Buffer,

partition Con.LSync_Buffer is Sync_Buffer"

w

The corresponding ADT will be:

with Universal_Sync.Buffer"
package Sync_Buffer.ADT is

Maz_Num_ltems : constant NATURAL :--50; +

tasl_ type Buffer_Type is
entry Put (Item: in INTEGER);
entry Get (Item: out INTEGER);
entry Num_o[_Items (Num : out NATURAL);

end Buffer.Type;

type Buffer.State is
record

T : Buffer_Type;
end record;

type Buffer is access Buffer.State;

procedure Create (B : in out Universal.Sync_Buffer.Parlition);

end Sync_Buffer-ADT;

+ :

The extra level of call indirection would need to define in its specification procedures

to give access to the task entries.

procedure Put (B" in out Buffer, Item" in INTEGER);
procedure Get (B " in out Buffer, Item • out INTEGER);
procedure Num_o/_Items (B " in out Buffer, Num • out NATURAL);

.This clearly does not match with the transformation strategy followed so far.

Status Report 3 - Dra[t '2"2

Selection by the caller

In the second solution,the selectionof the appropriate partitionbody may be made by

the ca_leritself.A callin AdaPT to a conformant partitionsubprogram likethe following:

Current.2uffer. Put (8);

will be converted into the Ada83 code:

caseCurrent.Buffer.Selector is

when Buffer_ADT.Selector =>

Buffer.A DT.Put (Current..Buffer, 8};

when Conf_Buffer_ADT.Selector =>

Con/_Buffer_.ADT. Put (Current_Buffer, 8};

whenothers =>

raise UniversaLBuffer. Undefined_Selector.

end case ;

We note that now the the parameter passed to the ADT's subprograms is of type

Partition. To access the ADT's state, the ADT's subprograms must first obtain the

partition instance.

procedure Put (B ' in out Universal_Buffer.Partition; Item" in NATURAL)is

An_instance : Buffer;,

begin
An.instance :'- Reference_to-Buffer (B.Re/erence);

end Put;

For this purpose, a new function Reference_to_Buffer has been included in the ADT's

body.

function Reference_to_Buffer is new UNCHECKED_CON VERSION
(UniversaL.Buffer. T_Re/erence, Buffer);

w

g

m

g

z
w

!
w

J

J

m
w

WI#

m

U

i

Status Report 3 - Draft
23

A call to a partition task entry will not be so straightforwardly implemented in Ada83.

To the execute the call, the task reference is necessary. As a partition visible task

is transformed into a component of the corresponding ADT's type, only the partition

instance currently referred by the Partition variable can provide the task reference. In

our Sync_Buffer's example, a call to the task entry Put would be converted into:

case Current. Buffer.Selector is

when $ync_Buffer_ADT.Selector =>

A_buffer-inst := Sync_Buffer-A D T. Reference_to_Bufffer (Current_Buffer);

A_buffer_inst.Put (8);

when Conf_Sync_Buffer_ADT.Selector =>

A_conf_buffer_inst := Conf_Sync_Buffer_A DT. Reference.to_Bufffer (Current_Buffer);

A_con[_buffer-inst. Put (8);

whenothers =>

raise Universal_Buffer. Undefined_Selector.

end case;

The new function Reference_to_Buffer must be specified in the ADT's interface when

there is a visible task. Otherwise, it could stay hidden in the ADT's body.

At first glance, this solution may seem to establish too much dependence between

the caller and the set of possible callees. However, we note that anyway a conformant

partition caller depends on the set of conformant partitions. When a new partition is

added to the conformant set, the caller's code should be updated whether it wants to

use it or not. A real disadvantage of this solution is the overhead implied by the task

entry calls. The call to obtain the partition instance (e.g. Reference_to_Buffer) implies

an extra call which could be a remote one. In fact, the worse case would be the remote

one, when the caller and the cailee reside in different nodes of the network. As remote

Rendez-vous are already themselves very expensive operations, we do not think that

the overhead produced by getting the partition instance is so important. Anyway, for

real-time systems with strong time requirements, the use of remote Rendez-vous should

be avoided. Otherwise this solution has two great advantages. First, it fits well in a

distributed environment with possible failures. Whenever a mode change is executed

modifying the referred conformant partition, there is no need to use the previous referred

partition (which could have been running in a node that now is unavailable). Second,

this solution shows clearly the management of the conformant partitions. Being non

transparent, this solution seems more easy to understand and to use. We have chosen it

for our transformation of the conformant partitions into Ada83.

w

Status Report 3 - Draft 2t

Finally, we note that DRAGON's implementation in Ada of dynamic binding has

not been mentioned as a possible alternative for the conformance relation support. In

DRAGOON's translation, method calls are dynamically bound to their implementation

by following the inheritance sequence until the correct class is reached. This procedure

does not fit well with the conformance relation which is a one-level relation, clearly

structurally different from the inheritance relation. Moreover, as the search for the

method implementation goes through the bodies of all classes involved in the inheritance

sequence, the procedure depends critically on the availability of those bodies. In AdaPT's

transformation into Ada83, such a dependence between the conformant partition bodies

cannot be established. It would run up against the purpose of the conformance relation

in supporting mode changes 12.

Concluding remarks on conformance

The implementation of the conformance relation in Ada83 increases the code and the

declarations required to simulate the partitions behaviour. With respect to the trans-

formation, this fact does not have too much importance as probably the transformation

would be an off-line tool. However, concerning the Ada83 system produced, the imple-

mentation of the conformance relation affects the system efficiency, mainly in the calls

to partitions. We remember that to deal with the conformance relation, each partition

call implies:

• identifying the kind of partition currentiy referenced,

• obtaining the corresponding partition instance.

The cost may even include extra calls over the network.

As seen in earlier sections of this report, implementation of a partition not involved

in any conformance relation does not require this extra code. Unfortunately, however, it

is not possible to know, when a given partition is transformed whether it will eventually

become just the first of a set of conformant "peers". It is therefore necessary to treat every

partition in the general way. Enabling calls to "non-conformant" partitions to be handled

in a more efficient way could be achieved using some transformation tool optimisation

or by defining a new reserved word in AdaPT to identify "non-conformant" partitions.

Normal ADTs could then be produced, without incIuding the modifications due to the

conformance relation, thus avoiding the unnecessary run-time overhead. Unfortunately,

in the case of a later redesign involving the introduction of a conformance relation for one

t2Mode changes can occur as a result of a node failure and then imply the unavailability of one of the
conformant partition bodies.

u

g

m

g

w

u

m
m

u

w

w

IW

w

Status Report 3 - Draft 25

of those "non-conformant" partitions, the generation of the corresponding Ada83 system

would require more effort because of the updating of all old references. At the current

stage of the project, this topic remains open.

5 ADTs and Virtual Nodes

It is interesting to note that the translation of partitions into ADT packages leads to

the recognition that such packages are already structures which provide in conventional

Ada the behaviour needed for Virtual Nodes. There have been many previous attempts

to find ways of constructing Ada programs for distribution. For example, DIADEM I],

ASPECT[.] etc... Such solutions have usually lacked the degree of flexibility required for

reliable real time systems. In fact, all these efforts overlooked the possibility of using

an ADT package as a virtual node. It is perfectly possible to write Ada code with the

properties of the translated AdaPT directly, once the understanding of what is being done

has been grasped. Partitions may be a luxury which can be dispensed with as a language

feature, though they would remain a very useful concept to guide the development of

correctly structured software.

It must be noted, however, that a package exporting a type can have many properties

which would make it unsuitable for use as a virtual node class. Thus the addition of a

language concept would constrain programmers to write well structured partitions, but

we consider that an important outcome of this work has been to recognize a new way of

programming distributed systems in conventional Ada. In a sense AdaPT should remain

as an important methodology even if software to support it is never written.

6 Location of Generated Code

w

Since the purpose of the AdaPT scheme is to create programs suitable for execution on

distributed hardware, it is important for system efficiency that the state information and

the operations which update it are stored in the same machine 13. This may be different

from the machine holding the instance variable which references it. It is therefore worth

noting that the space for the state record is provided by the transformed code in the create

operation of the ADT. Within the body of that operation, an Ada new allocator will

actually create the space on the heap of its current machine. This is the intended effect

provided there is only one instance of the partition, or at least that all such instances are
created in the same node.

13Indeed this is what virtual nodes are intended to ensure.

Status Report .3- Draft 26

If several partition instances are required in different nodes (which will be a common

sittiation) the ADT derived from its declaration must be replicated in each node and

provision made to ensure that the create operation is executed in the appropriate node.
This will be further discussed in section 7.2.

7 Structuring the System in Nodes

A full report on the structure of a network of nodes will be presented at a later date.

Here we are limiting this account to an outline of the general principles.

A node has a structure identical to that of a partition. It must fulfil the same

constraints except that a node is allowed to create partitions as well as nodes. Therefore,

like partitions, nodes are transformed into ADT's. However, partitions and nodes have

different purposes. Unlike partitions that reflect the unit of distribution, nodes support

the concept of configurati9n. Inside ,an application, a node will be used to express a unit

of network allocation. The purpose of a node is to become, eventually, the code from

which a binary load module can be generated for allocation to a particular machine. To

conform with Ada's requirements, it must have the form of a procedure. This procedure

is called from the networking system and forms, as we shall see, part of the structure

required to enable the correct creation of the nodes at system elaboration.

The transformation of nodes into Ada83 introduces the following new problems:

1. System-wide Identifier,

2. Node Creation,

3. Caller Interface,

4. Callee Interface.

7.1 System-wide Identifier

In a networking situation references consisting of an Ada access variable which correspond

to a store address in the current machine are insufficient. They must be extended to

a record holding a node identifier (machine plus program) and a store address in the

identified machine. This presents no problems to the implementation.

z

g

g

I

m

m

g

g

g

W

w

!

z
t

m

m
w

J

Status Report 3 - Draft
27

7.2 Node Creation

Like a partition, a node has a create operation in its interface, which has parameters

corresponding to the initialization parameters of the node instance being created. This

is called from the body of the root procedure created in the Ada translation of the nodes.

There is a small difference between the case of a distinguished node and any other node,

in that the latter must return to caller, who invokes the create operation over the network,

the (extended) reference to the node produced.

W

Im

g

m
m

m

_I
w

U

w

I_

w

W

w

_z

B
Ill

mz
J

II

m
Ii

m

ml

B

J

